Tests on the Value at Risk

Author
Affiliation

Beniamino Sartini

University of Bologna

Published

May 1, 2024

Modified

June 30, 2024

Setup
library(dplyr)
library(latex2exp)
library(backports)
library(ggplot2)
library(knitr)

Let’s consider a Gaussian AR(2)-GARCH(1,2) model defined as: xt=μ+ϕ1xt1+ϕ2xt2+et,et=σtut,σt2=ω+α1et12+β1σt12+β2σt22. The Value at Risk (VaR) at a confidence level α is time dependent and implicitly defined as: P{XtVaRt|t1α|It1)=α. The distribution of xt is normal with conditional moments given by: {E{Xt|It1}=μ+ϕ1xt1+ϕ2xt1V{Xt|It1}=ω+α1et12+β1σt12+β2σt22 Hence, given the quantile of a standard normal, namely qα the Value at Risk can be simply computed as: VaRt|t1α=E{Xt|It1}+qαV{Xt|It1}.

1 Test on the number of violations

Let’s define a violation of the VaRt|t1α as vt=1[xtVaRt|t1α]Bernoulli(α),

and let’s define the number of violations of the conditional VaR as follows, i.e. Nt=i=1tvi.

1.1 Asymptotic variance

Applying the central limit theorem (CLT) it is possible to prove that the statistic test converges in distribution to a standard normal, i.e. NV1=1ti=1t(viαα(1α))dnN(0,1). Hence, given the null hypothesis H0:P{XtVaRt|t1α|It1)=α, that is equivalent to E{et}=α we define the critical values at a confidence level α as α=P{|NV1|>tα/2}tα/2=P1{P{|NV1|>tα/2}}

where P and P1 are respectively the distribution and the quantile of a standard normal. Therefore, the null hypothesis is rejected at a confidence level α if: {[NV1<tα/2][NV1>tα/2]H0 rejected[tα/2<NV1<tα/2]H0 non rejected

1.2 Empirical variance

Instead of using the theoretical variance of et, namely α(1α), let’s substitute it with the empirical one, i.e. α(1α)Ntt(1Ntt). Hence, the new statistic test NV2 converges to NV1 in probability, therefore also in distribution, i.e.  NV2=1ti=1t(viαNtt(1Ntt))pnNV1dnN(0,1).

For small samples, the following relation between the two statistics should be used: NV2=α(1α)Ntt(1Ntt)NV1.

2 Example: H0 is not rejected

Instead of simulating exactly utN(0,1), let’s simulate residuals that are close to the normal distribution, i.e. utt(25).

AR(2)-GARCH(1,2) simulation and VaR
# ===================== Setups ======================
set.seed(1)   # random seed 
ci <- 0.05    # confidence level 
t_bar <- 5000 # number of simulations 
# parameters
parAR <- c(mu=0.5, phi1 = 0.34, phi1 = 0.14)
parGARCH <- c(omega=0.4, alpha1=0.25, 
              beta1=0.25, beta2=0.15) 
# long-term std deviation of residuals 
sigma_eps <- sqrt(parGARCH[1]/(1-sum(parGARCH[-1])))
# ================== Simulation =====================
# Initial points
Xt <- rep(parAR[1]/(1-sum(parAR[-1])), 3)
sigma <- rep(sigma_eps, 3)
# Simulated residuals 
eps <- rt(t_bar, 25)
eps[1:3] = eps[1:3]*sigma_eps
# Value at Risk
q_alpha = qnorm(ci)
VaR = c(0)
for(t in 3:t_bar){
  # AR component 
  Xt[t] <- parAR[1] + parAR[2]*Xt[t-1] + parAR[3]*Xt[t-2]
  # ARCH component 
  sigma[t] <- parGARCH[1] + parGARCH[2]*eps[t-1]^2 
  # GARCH component 
  sigma[t] <- sigma[t] + parGARCH[3]*sigma[t-1]^2 + parGARCH[4]*sigma[t-2]^2
  sigma[t] <- sqrt(sigma[t])
  # Simulated residuals 
  eps[t] <- sigma[t]*eps[t]
  # Simulated value at risk
  VaR[t] <- Xt[t] + sigma[t]*q_alpha
  # Simulated time series 
  Xt[t] <- Xt[t] + eps[t]
}
# ===================== Plot ======================
# GARCH(1,1) simulation
ggplot()+
  geom_line(aes(1:t_bar, Xt), size = 0.2)+
  geom_line(aes(1:t_bar, VaR), size = 0.2, color = "red")+
  theme_bw()+
  labs(x = NULL, y = TeX("$X_t$"),
       subtitle = TeX(paste0("$\\mu:\\;", parAR[1], 
                             "\\;\\; \\phi_{1}:\\;", parAR[2],
                             "\\;\\; \\phi_{2}:\\;", parAR[3],
                             "\\;\\; \\omega:\\;", parGARCH[1], 
                             "\\;\\; \\alpha_{1}:\\;", parGARCH[2],
                             "\\;\\; \\beta_{1}:\\;", parGARCH[3],
                             "\\;\\; \\beta_{2}:\\;", parGARCH[4],
                             "$")))
Figure 1: AR(2)-GARCH(1,2) simulation with theoric (red) VaR at α=0.05.
NV test Student-t25
# ======================================
# Violation of the VaR
vt <- ifelse(Xt < VaR, 1, 0)
vt[1:3] <- 0
# Theoric variance
v_theoric <- ci*(1-ci)
# Empiric variance
v_empiric <- (sum(vt)/t_bar)*(1 - sum(vt)/t_bar)
# Standardized number of violations
Nt <- sum((vt - ci)/sqrt(v_theoric))
# Statistic test (NV_1)
NV1 <- (1/sqrt(t_bar))*Nt
# Statistic test (NV_2)
NV2 <- (sqrt(v_theoric)/sqrt(v_empiric))*NV1
# Rejection level 
t_alpha <- qnorm(ci/2)
# =============== Kable =============== 
kab <- dplyr::tibble(
  n = t_bar,
  alpha = paste0(format(ci*100, digits = 3), "%"),
  alpha_hat = paste0(format(sum(vt)/t_bar*100, digits = 3), "%"),
  t_alpha_dw = t_alpha,
  NV1 = NV1,
  NV2 = NV2,
  t_alpha_up = -t_alpha,
  H01 = ifelse(NV1 > t_alpha_up | NV1 < t_alpha_dw, "Rejected", "Non-Rejected"),
  H02 = ifelse(NV2 > t_alpha_up | NV2 < t_alpha_dw, "Rejected", "Non-Rejected")
)  %>%
  dplyr::mutate_if(is.numeric, format, digits = 4, scientific = FALSE)
colnames(kab) <- c("$$n$$", "$$\\alpha$$", "$$\\frac{N_n}{n}$$", "$$-t_{\\alpha/2}$$", 
                   "$$NV_1$$", "$$NV_2$$", "$$t_{\\alpha/2}$$", "$$H_0(NV_1)$$", "$$H_0(NV_2)$$")
knitr::kable(kab, booktabs = TRUE ,escape = FALSE, align = 'c')%>%
  kableExtra::row_spec(0, color = "white", background = "green") 
Table 1: Test for a Student-t with 25 degrees of freedom at α=0.05 on the number of violations of the theoric VaR at α=0.05.
n α Nnn tα/2 NV1 NV2 tα/2 H0(NV1) H0(NV2)
5000 5% 5.6% -1.96 1.947 1.845 1.96 Non-Rejected Non-Rejected

3 Example: H0 is rejected

Instead of simulating exactly utN(0,1), let’s simulate residuals that are not close to the normal distribution, i.e. utt(5).

AR(2)-GARCH(1,2) simulation and VaR
# ==================== Setups =====================
set.seed(1)   # random seed 
ci <- 0.05    # confidence level 
t_bar <- 1000 # number of simulations 
# parameters
parAR <- c(mu=0.5, phi1 = 0.34, phi1 = 0.14)
parGARCH <- c(omega=0.4, alpha1=0.25,
              beta1=0.25, beta2=0.15) 
# quasi long-term std deviation of residuals 
sigma_eps <- sqrt(parGARCH[1]/(1-sum(parGARCH[-1])))
# ================== Simulation ===================
set.seed(1)
# Initial points
Xt <- rep(parAR[1]/(1-sum(parAR[-1])), 3)
mu <- rep(parAR[1]/(1-sum(parAR[-1])), 3)
sigma <- rep(sigma_eps, 3)
# Simulated residuals 
eps <- rt(t_bar, 5) 
eps[1:3] <- eps[1:3]*sigma_eps
# Value at Risk
q_alpha = qnorm(ci)
VaR = c(0)
for(t in 3:t_bar){
  # AR component 
  mu[t] <- parAR[1] + parAR[2]*Xt[t-1] + parAR[3]*Xt[t-2]
  # ARCH component 
  sigma[t] <- parGARCH[1] + parGARCH[2]*eps[t-1]^2 
  # GARCH component 
  sigma[t] <- sigma[t] + parGARCH[3]*sigma[t-1]^2 + parGARCH[4]*sigma[t-2]^2
  sigma[t] <- sqrt(sigma[t])
  # Simulated residuals 
  eps[t] <- sigma[t]*eps[t]
  # Simulated value at risk
  VaR[t] <- mu[t] + sigma[t]*q_alpha
  # Simulated time series 
  Xt[t] <- mu[t] + eps[t]
}
# Empirical quantile 
q_alpha_emp <- quantile(eps/sigma, probs = ci)
VaR_emp <- mu + sigma*q_alpha_emp

# ===================== Plot ======================
# GARCH(1,1) simulation
ggplot()+
  geom_line(aes(1:t_bar, Xt), size = 0.2)+
  geom_line(aes(1:t_bar, VaR), size = 0.2, color = "red")+
  geom_line(aes(1:t_bar, VaR_emp), size = 0.2, color = "blue")+
  theme_bw()+
  labs(x = NULL, y = TeX("$X_t$"),
       subtitle = TeX(paste0("$\\mu:\\;", parAR[1], 
                             "\\;\\; \\phi_{1}:\\;", parAR[2],
                             "\\;\\; \\phi_{2}:\\;", parAR[3],
                             "\\;\\; \\omega:\\;", parGARCH[1], 
                             "\\;\\; \\alpha_{1}:\\;", parGARCH[2],
                             "\\;\\; \\beta_{1}:\\;", parGARCH[3],
                             "\\;\\; \\beta_{2}:\\;", parGARCH[4],
                             "$")))
Figure 2: AR(2)-GARCH(1,2) simulation with theoric (red) and empirical (blue) VaR at α=0.05.

Computing the test on the normal quantile gives a rejection of the null hypothesis H0, i.e. the deviation from the VaR is not stochastic and it is not an adequate measure of risk.

Theoric NV test Student-t5
# ======================================
# Violation of the VaR
vt <- ifelse(Xt < VaR, 1, 0)
vt[1:3] <- 0
# Theoric variance
v_theoric <- ci*(1-ci)
# Empiric variance
v_empiric <- (sum(vt)/t_bar)*(1 - sum(vt)/t_bar)
# Standardized number of violations
Nt <- sum((vt - ci)/sqrt(v_theoric))
# Statistic test (NV_1)
NV1 <- (1/sqrt(t_bar))*Nt
# Statistic test (NV_2)
NV2 <- (sqrt(v_theoric)/sqrt(v_empiric))*NV1
# Rejection level 
t_alpha <- qnorm(ci/2)
# =============== Kable =============== 
kab <- dplyr::tibble(
  n = t_bar,
  alpha = paste0(format(ci*100, digits = 3), "%"),
  alpha_hat = paste0(format(sum(vt)/t_bar*100, digits = 3), "%"),
  t_alpha_dw = t_alpha,
  NV1 = NV1,
  NV2 = NV2,
  t_alpha_up = -t_alpha,
  H01 = ifelse(NV1 > t_alpha_up | NV1 < t_alpha_dw, "Rejected", "Non-Rejected"),
  H02 = ifelse(NV2 > t_alpha_up | NV2 < t_alpha_dw, "Rejected", "Non-Rejected")
)  %>%
  dplyr::mutate_if(is.numeric, format, digits = 4, scientific = FALSE)
colnames(kab) <- c("$$n$$", "$$\\alpha$$", "$$\\frac{N_n}{n}$$", "$$-t_{\\alpha/2}$$", 
                   "$$NV_1$$", "$$NV_2$$", "$$t_{\\alpha/2}$$", "$$H_0(NV_1)$$", "$$H_0(NV_2)$$")
knitr::kable(kab, booktabs = TRUE ,escape = FALSE, align = 'c')%>%
  kableExtra::row_spec(0, color = "white", background = "green") 
Table 2: Test for a Student-t with 5 degrees of freedom at α=0.05 on the number of violations of the theoric VaR at α=0.05.
n α Nnn tα/2 NV1 NV2 tα/2 H0(NV1) H0(NV2)
1000 5% 8.5% -1.96 5.078 3.969 1.96 Rejected Rejected

Setting α=0.05 we obtain an empiric q^α equal to -2.07 different from the theoric one of -1.6449.

4 VaR for BTC

From the series of close prices Pt, let’s compute the log-returns as: Rt=log(PtPt1)=log(Pt)log(Pt1) Then, we fit a GARCH(2,3) on the log-returns, i.e. xt=μ+etet=σtutσt2=ω+i=12αieti2+j=13βjσtj2 under the assumption of utN(0,1).

BTC data
library(rugarch)
ci <- 0.05    # confidence level 
# library(binancer) download prices 
load("../../../databases/data/temporary/crypto_prices.RData")
#btcusdt <- binancer::binance_klines("BTCUSDT", api = "spot", interval = "1d", 
#                                    from = "2018-01-01", to = Sys.Date()) 
# log close prices
btcusdt$log_Pt <- log(btcusdt$close)
# log returns 
btcusdt$Rt <- c(0, diff(btcusdt$log_Pt))
# In sample estimate 
data <- dplyr::filter(btcusdt, date <= as.POSIXct("2024-01-01"))
# Test 
data_test <- dplyr::filter(btcusdt, date >= as.POSIXct("2023-12-01"))
fit GARCH(2,3)
# GARCH Model
# Variance specification
GARCH_spec <- rugarch::ugarchspec(
    variance.model = list(model = "sGARCH", garchOrder = c(2,3), external.regressors = NULL),
    mean.model = list(armaOrder = c(0,0), include.mean = FALSE), distribution.model = "norm")
# Fitted model
GARCH_model <- rugarch::ugarchfit(data = data$Rt, spec = GARCH_spec, out.sample = 0)
# Fitted variance
data$sigma2 <- GARCH_model@fit$var
# Fitted standard deviation
data$sigma <- sqrt(data$sigma2)
# Standardized residuals
data$ut <- data$Rt/data$sigma

kab <- as_tibble(t(as_tibble(GARCH_model@fit$coef)))%>%
  dplyr::mutate_if(is.numeric, format, digits = 4, scientific = FALSE)
colnames(kab) <- c("$$\\omega$$", "$$\\alpha_1$$", "$$\\alpha_2$$", 
                   "$$\\beta_1$$", "$$\\beta_2$$", "$$\\beta_3$$")
knitr::kable(kab, booktabs = TRUE ,escape = FALSE, align = 'c')%>%
  kableExtra::row_spec(0, color = "white", background = "green") 
Table 3: Estimated GARCH(2,3) parameters on BTC log-returns.
ω α1 α2 β1 β2 β3
0.0001155 0.1929 0.00000009728 0.1843 0.00000004144 0.5573
GARCH(2,3) std. deviation (BTC)
ggplot(data)+
  geom_line(aes(date, sigma))+
  theme_bw()
Figure 3: GARCH(2,3) std. deviation of BTC log-returns.
Empiric vs theoric VaR on (BTC)
VaR <- qnorm(0.05)*data$sigma
VaR_emp <- quantile(data$ut, probs = 0.05)*data$sigma
ggplot(data)+
  geom_line(aes(date, Rt), size = 0.2)+
  geom_line(aes(date, VaR), color = "red")+
  geom_line(aes(date, VaR_emp), color = "blue", size = 0.2)+
  theme_bw()+
  labs(x = NULL, y = TeX("$R_t$"))
Figure 4: Empirical VaR (red) and theoric VaR (blue) at α=0.05 for BTC log-returns.
Empiric NV test (BTC)
# ======================================
Xt <- data$Rt
t_bar <- nrow(data)
# Violation of the VaR
vt <- ifelse(Xt < VaR, 1, 0)
vt[1:3] <- 0
# Theoric variance
v_theoric <- ci*(1-ci)
# Empiric variance
v_empiric <- (sum(vt)/t_bar)*(1 - sum(vt)/t_bar)
# Standardized number of violations
Nt <- sum((vt - ci)/sqrt(v_theoric))
# Statistic test (NV_1)
NV1 <- (1/sqrt(t_bar))*Nt
# Statistic test (NV_2)
NV2 <- (sqrt(v_theoric)/sqrt(v_empiric))*NV1
# Rejection level 
t_alpha <- qnorm(ci/2)
# =============== Kable =============== 
kab <- dplyr::tibble(
  n = t_bar,
  alpha_hat = paste0(format(sum(vt)/t_bar*100, digits = 3), "%"),
  t_alpha_dw = t_alpha,
  NV1 = NV1,
  NV2 = NV2,
  t_alpha_up = -t_alpha,
  H01 = ifelse(NV1 > t_alpha_up | NV1 < t_alpha_dw, "Rejected", "Non-Rejected"),
  H02 = ifelse(NV2 > t_alpha_up | NV2 < t_alpha_dw, "Rejected", "Non-Rejected")
)  %>%
  dplyr::mutate_if(is.numeric, round, digits = 4)
colnames(kab) <- c("$$n$$", "$$\\frac{N_n}{n}$$", "$$-t_{\\alpha/2}$$", 
                   "$$NV_1$$", "$$NV_2$$", "$$t_{\\alpha/2}$$", "$$H_0(NV_1)$$", "$$H_0(NV_2)$$")
knitr::kable(kab, booktabs = TRUE ,escape = FALSE, align = 'c')%>%
  kableExtra::row_spec(0, color = "white", background = "green") 
Table 4: Test at α=0.05 on the number of violations of the theoric VaR at α=0.05 for log-returns of BTC.
n Nnn tα/2 NV1 NV2 tα/2 H0(NV1) H0(NV2)
2193 4.38% -1.96 -1.3374 -1.4247 1.96 Non-Rejected Non-Rejected
GARCH(2,3) simulation (BTC)
# ==================== Setups =====================
set.seed(3959) # random seed 
parAR <- c(mu=0, phi1=0, phi2=0) # AR parameters
parGARCH <- GARCH_model@fit$coef # GARCH parameters
# long-term std deviation of residuals 
sigma_eps <- sqrt(parGARCH[1]/(1-sum(parGARCH[-1])))
# ================== Simulation ===================
# Initial points
Xt <- data_test$Rt
# number of simulations 
t_bar <- length(Xt)
mu <- rep(parAR[1]/(1-sum(parAR[-1])), 4)
sigma <- rep(sigma_eps, 4)
# Simulated residuals 
eps <- rnorm(t_bar) 
eps[1:4] = eps[1:4]*sigma[1]
# Value at Risk
q_alpha = qnorm(ci)
VaR = c(0)
for(t in 4:t_bar){
  # AR component 
  mu[t] <- parAR[1] + parAR[2]*Xt[t-1] + parAR[3]*Xt[t-2]
  # ARCH component 
  sigma[t] <- parGARCH[1] + parGARCH[2]*eps[t-1]^2 + parGARCH[3]*eps[t-2]^2 
  # GARCH component 
  sigma[t] <- sigma[t] + parGARCH[4]*sigma[t-1]^2 + parGARCH[5]*sigma[t-2]^2 + parGARCH[6]*sigma[t-3]^2
  sigma[t] <- sqrt(sigma[t])
  # Simulated residuals 
  eps[t] <- sigma[t]*eps[t]
  # Simulated value at risk
  VaR[t] <- mu[t] + sigma[t]*q_alpha
  # Simulated time series 
  Xt[t] <- mu[t] + eps[t]
}
# Empirical quantile 
q_alpha_emp <- quantile(eps/sigma, probs = ci)
VaR_emp <- mu + sigma*q_alpha_emp

# ===================== Plot ======================
# GARCH(2,3) simulation
ggplot()+
  geom_line(aes(data_test$date, data_test$close[4]*cumprod(exp(Xt)), color = "sim"), size = 0.2)+
  geom_line(aes(data_test$date, data_test$close[4]*cumprod(exp(data_test$Rt)), color = "emp"), size = 0.2)+
  scale_color_manual(values = c(sim = "red", emp = "black"),
                     labels = c(sim = "Simulated", emp = "Empiric"))+
  theme_bw()+
  theme(legend.position = "top")+
  labs(x = NULL, y = "BTC-USDT", color = NULL)
Figure 5: BTC under GARCH(2,3) model (red) and realized prices (black).
Back to top

Citation

BibTeX citation:
@online{sartini2024,
  author = {Sartini, Beniamino},
  title = {Tests on the {Value} at {Risk}},
  date = {2024-05-01},
  url = {https://greenfin.it/statistics/tests/var-tests.html},
  langid = {en}
}
For attribution, please cite this work as:
Sartini, Beniamino. 2024. “Tests on the Value at Risk.” May 1, 2024. https://greenfin.it/statistics/tests/var-tests.html.